Paper-1 (Theory) Course Title: Organic Synthesis A

Programme: Science	Degree in Bachelor of	Year: T	hree	SEMESTER-V			
Science	Subject: Chemistry						
C	Course Code: B020501T Course Title: Organic Synthesis A						
Course ou	Course outcomes: Hydrocarbons are the principal constituents of petroleum and natural gas. They serve as fuels and						
lubricants a	as well as raw materials for the	production of plas	stics, fibers,	rubbers, solvents and industrial chemica	als. This		
course will	provide a broad foundation in a	for the synthesis o	of hydrocarb	ons. Hydroxy and carbonyl compounds	are		
industrially	v important compounds The ind	ustries of plastics	, fibers, petr	oleum and rubbers will specially recogn	ize this		
course. Stu	dents will gain an understandin	g of which are us	ed as solven	ts and raw material for synthesis of drug	g and		
other pharm	naceutically important compour	nds.					
•	Synthesis and chemical propert	ies of aliphatic an	nd aromatic	hydrocarbons			
•	Synthesis and chemical propert	ies of alcohols, h	alides carbo	myl compounds, carboxylic acids and es	sters		
•	How to design and synthesize a	liphatic and arom	natic hydroca	arbons.			
•	How to convert aliphatic and an	omatic hydrocarb	oons to other	industrially important compounds			
•	Functional group interconversion	on.					
			Γ				
	Credits: 4 Elective						
Max. Marks: 25+75 Min. Passing Marks:							
		Total No. of	Lectures- =	= 60			
Unit		Тор	ics		No. of Lectures		
	Chemistry of Alkanes and C	ycloalkanes					
	A) Alkanes :Classification of o	carbon atom in alk	kanes, Gener	ral methods of preparation, physical and			
	chemical properties of alkanes: Wurtz Reaction, Wurtz-Fittig Reactions, Free radical substitutions:						
Ι	Halogenation -relative reactivity	ty and selectivity			8		
	B) Cycloalkanes: Nomenclature, methods of formation, chemical reactions, Baeyer's strain theory				-		
	and its limitations. Chair, Boat and Twist boat forms of cyclohexane with energy diagrams ring strain						
	in small rings, theory of strain less rings. The case of cyclopropane ring, banana bonds.						
	Chemistry of Alkenes						
Methods of formation of alkenes, Addition to C=C: mechanism (with evidence wherever ap			sm (with evidence wherever applicable),				
п	reactivity, regioselectivity (Markownikoff and anti-Markownikoff additions) and stereoselectivity;				12		
	reactions: hydrogenation,	halogenation,	hydrohaloge	enation, hydration, oxymercuration	12		
	demercuration, hydroboration	-oxidation, epox	idation, <i>syr</i>	<i>i</i> and <i>anti</i> -hydroxylation, ozonolysis,	S1S,		
	addition of singlet and triplet carbenes; Simmons-Smith cyclopropanation reaction; electrophilic						

and benzylic bromination in competition with brominations across C=C; use of NBS; interconversion of <i>E</i> - and <i>Z</i> - alkenes. Chemistry of Alkynes Methods of formation of alkynes, Addition to C=C, mechanism, reactivity, regioselectivity and stereoselectivity; reactions: hydrogenation, halogenations, hydrohalogenation, hydration, oxymercuration demercuration, hydroboration-oxidation, dissolving metal reduction of alkynes (Birch); reactions of terminal alkynes by exploring its acidity; inter conversion of terminal and non-terminal alkynes. 06 Aromaticity and Chemistry of Arenes Nomenclature of benzene derivatives, MO picture of benzene, Aromaticity: Hückel's rule, aromatic character of arenes, cyclic carbocations/carbanions. Electrophilic aromatic substitution:		
of E- and Z- alkenes. Chemistry of Alkynes Methods of formation of alkynes, Addition to C=C, mechanism, reactivity, regioselectivity and stereoselectivity; reactions: hydrogenation, halogenations, hydrohalogenation, hydration, oxymercuration demercuration, hydroboration-oxidation, dissolving metal reduction of alkynes (Birch); reactions of terminal alkynes by exploring its acidity; inter conversion of terminal and non-terminal alkynes. 06 Aromaticity and Chemistry of Arenes Nomenclature of benzene derivatives, MO picture of benzene, Aromaticity: Hückel's rule, aromatic character of arenes, cyclic carbocations/carbanions. Electrophilic aromatic substitution:		
Chemistry of Alkynes Methods of formation of alkynes, Addition to C=C, mechanism, reactivity, regioselectivity and stereoselectivity; reactions: hydrogenation, halogenations, hydrohalogenation, hydration, oxymercuration demercuration, hydroboration-oxidation, dissolving metal reduction of alkynes (Birch); reactions of terminal alkynes by exploring its acidity; inter conversion of terminal and non-terminal alkynes. 06 Aromaticity and Chemistry of Arenes Nomenclature of benzene derivatives, MO picture of benzene, Aromaticity: Hückel's rule, aromatic character of arenes, cyclic carbocations/carbanions. Electrophilic aromatic substitution:		
Image: Methods of formation of alkynes, Addition to C=C, mechanism, reactivity, regioselectivity and stereoselectivity; reactions: hydrogenation, halogenations, hydrohalogenation, hydration, oxymercuration demercuration, hydroboration-oxidation, dissolving metal reduction of alkynes 06 (Birch); reactions of terminal alkynes by exploring its acidity; inter conversion of terminal and non-terminal alkynes. 06 Aromaticity and Chemistry of Arenes Nomenclature of benzene derivatives, MO picture of benzene, Aromaticity: Hückel's rule, aromatic character of arenes, cyclic carbocations/carbanions. Electrophilic aromatic substitution:		
 stereoselectivity; reactions: hydrogenation, halogenations, hydrohalogenation, hydration, oxymercuration demercuration, hydroboration-oxidation, dissolving metal reduction of alkynes (Birch); reactions of terminal alkynes by exploring its acidity; inter conversion of terminal and non-terminal alkynes. Aromaticity and Chemistry of Arenes Nomenclature of benzene derivatives, MO picture of benzene, Aromaticity: Hückel's rule, aromatic character of arenes, cyclic carbocations/carbanions. Electrophilic aromatic substitution: 		
 III oxymercuration demercuration, hydroboration-oxidation, dissolving metal reduction of alkynes 06 (Birch); reactions of terminal alkynes by exploring its acidity; inter conversion of terminal and non-terminal alkynes. Aromaticity and Chemistry of Arenes Nomenclature of benzene derivatives, MO picture of benzene, Aromaticity: Hückel's rule, aromatic character of arenes, cyclic carbocations/carbanions. Electrophilic aromatic substitution: 06 		
 (Birch); reactions of terminal alkynes by exploring its acidity; inter conversion of terminal and non-terminal alkynes. Aromaticity and Chemistry of Arenes Nomenclature of benzene derivatives, MO picture of benzene, Aromaticity: Hückel's rule, aromatic character of arenes, cyclic carbocations/carbanions. Electrophilic aromatic substitution: 		
terminal alkynes. Aromaticity and Chemistry of Arenes Nomenclature of benzene derivatives, MO picture of benzene, Aromaticity: Hückel's rule, aromatic character of arenes, cyclic carbocations/carbanions. Electrophilic aromatic substitution:		
Aromaticity and Chemistry of Arenes Nomenclature of benzene derivatives, MO picture of benzene, Aromaticity: Hückel's rule, aromatic character of arenes, cyclic carbocations/carbanions. Electrophilic aromatic substitution:		
Nomenclature of benzene derivatives, MO picture of benzene, Aromaticity: Hückel's rule, aromatic character of arenes, cyclic carbocations/carbanions. Electrophilic aromatic substitution:		
character of arenes, cyclic carbocations/carbanions. Electrophilic aromatic substitution:		
IV halogenation, nitration, sulphonation and Friedel-Craft's alkylation/acylation with their Mechanism.	I	
Directing effects of the groups. Birch reduction, Methods of formation and chemical reactions of	f	
alkylbenzenes, alkynylbenzenes and biphenyl, naphthalene and anthracene.		
Chemistry of Alcohols		
Classification and nomenclature, Monohydric alcohols - nomenclature, methods of formation by		
reduction of Aldehydes, Ketones, Carboxylic acids and Esters, Hydrogen bonding, Acidic nature,		
V Reactions of alcohols. Dihydric alcohols nomenclature, methods of formation, chemical reactions 8		
of vicinal glycols, oxidative cleavage [Pb(OAc)4 and HIO ₄] and pinacol pinacolone rearrangement.		
Trihydric alcohols - nomenclature, methods of formation, chemical reactions of glycerol.		
Chamistry of Phanols : Nomenclature, structure and handing, preparation of phanols, physical		
properties and acidic character. Comparative acidic strengths of alcohols and phenols, resonance		
stabilization of phenoxide ion. Reactions of phenols electrophilic aromatic substitution aculation		
VI and carboxylation Mechanisms of Fries rearrangement. Claisen rearrangement Gatterman synthesis	,	
Hauben Hoesch reaction Lederer-Manasse reaction and Reimer-Tiemann reaction		
Hadden Hoesen reaction, Lederer-Wanasse reaction and Renner- Homann reaction		
Chamistry of Ethers and Enovides: Nomenclature of others and methods of their formation		
nhysical properties Chemical reactions – cleavage and autovidation. Ziesel's method Synthesis of		
VII enovides Acid and base-catalyzed ring opening of enovides orientation of enovide ring opening		
reactions of Grignard and organolithium reagents with enovides		
reactions of originate and organominum reagents with epoxides.		
Chemistry of Organic Halides		
VIII Nomenclature and classes of alkyl halides, methods of formation, chemical reactions, Mechanisms 05		
of nucleophilic substitution reactions of alkyl halides, SN ² and SN ¹ reactions with energy profile		

Suggested Readings:
allyl, vinyl and aryl halides, Synthesis and uses of DDT and BHC.
mechanisms of nucleophilic aromatic substitution reactions; Relative reactivities of alkyl halides vs
halides, nuclear and side chain reactions; The addition-elimination and the elimination-addition
diagrams; Polyhalogen compounds : Chloroform, carbon tetrachloride; Methods of formation of aryl

- 1. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 2. Sykes, P. A guidebook to Mechanism in Organic Chemistry, Pearson Education, 2003.
- 3. Carey, F. A., Guiliano, R. M. Organic Chemistry, Eighth edition, McGraw Hill Education, 2012.
- 4. Loudon, G. M. Organic Chemistry, Fourth edition, Oxford University Press, 2008.
- 5. Clayden, J., Greeves, N. & Warren, S. *Organic Chemistry*, 2nd edition, Oxford University Press, 2012.
- 6. Graham Solomons, T.W., Fryhle, C. B. Organic Chemistry, John Wiley & Sons, Inc.
- 7. Smith, J. G. Organic Chemistry, Tata McGraw-Hill Publishing Company Limited.
- March, J. Advanced Organic Chemistry, Fourth edition, Wiley. 8.
- 9. Bariyar and Goyal, Organic Chemistry-II, Krishna Prakashan Media, Meerut, Third Eddition, 2019

Note: For the promotion of Hindi language, course books published in Hindi may be prescribed by the University Suggested online links:

http://heecontent.upsdc.gov.in/Home.aspx

https://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/intro1.htm

https://nptel.ac.in/courses/104/103/104103071/#

https://nptel.ac.in/courses/104/106/104106096/

This course is compulsory for the students of following subjects: Chemistry in 12th Class

Suggested Continuous Evaluation Methods:

Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations, among others.

Or

Assessment and presentation of Assignment	(10 marks)
04 Unit tests (Objective): Max marks of each unit test $= 10$	(10 marks)
(average of all 04 unit tests)		
Overall performance throughout the . (Discipline,	()	05 marks)
participation in different activities)		
Course prerequisites: To study this course, a student must	t have Passed Sem-I, Theory paper	

Suggested equivalent online courses:

Further Suggestions:

.....

Paper-2 Course Title: Rearrangements and Chemistry of Group Elements

Programme: Science	Degree in Bachelor of	Year: Three	SEMESTER-V	
	_	Subject: Chemistry		
Course Code: B020502T Course Title: Rearrangements and Chemistry of Group Eleme				
Course function jobs in p • It re • This occ the cha	outcomes: This paper provide nal groups inter conversion. Orga production & QC departments re- clates and gives an analytical ap s paper also provides a de- currence in nature. Their pos eir extraction. This paper also <u>aracteristics.</u> <u>Credits: 4</u>	es detailed knowledge of syn anic synthesis is the most imp elated to chemicals, drugs, m titude for synthesizing variou tailed knowledge on the ition in periodic table, thei gives detailed understandi	thesis of various class of organic comportant branch of organic chemistry whi edicines, FMCG etc. industries. s industrially important compounds. elements present in our surround r physical and chemical properties ng of the s, p, d and f block element Elective	pounds and ch provides ings, their as well as is and their
	Max. Marks: 25+75	Total No. of Lectures-	Min. Passing Marks: = 60	
Unit		Topics		No. of Lectures
I	Rearrangements A detailed study of the following rearrangements: Pinacol-pinacolone, Demjanov, BenzilBensilic acid, Favorskii, Hofman, Curtius, Schmidt, Baeyer-Villiger and Fries rearrangement			6
II	Catalysis General principles and properties of catalysts, homogenous catalysis (catalytic steps and examples) and heterogenous catalysis (catalytic steps and examples) and their industrial applications, Deactivation or regeneration of catalysts. Phase transfer catalysts, application of zeolites as catalysts. Enzyme catalysis; Michaelis-Menten equation, turn-over number.			8
ш	Chemistry of Main Group E	lements		10

s-Block Elements: Comparative study, diagonal relationship, salient features of hydrides, solvation				
	and complexation tendencies including their function in biosystems, an introduction to alkyls and			
	aryls.			
	p-Block Elements : Comparative study (including diagonal relationship) of groups 13-17 element			
	compounds like hydrides, oxides, oxyacids and halides of group 13-16, hydrides of boron-dibora			
	and higher boranes, borazine, borohydrides, fullerenes, carbides, fluorocarbons, silicates (structura			
	principle), tetrasulphur tetra nitride, basic properties of halogens, interhalogens and polyhalides.			
	Chemistry of Noble Gasses: Chemical properties of the noble gases, chemistry of xenon, structure			
	and bonding in xenon compounds.			
	Chemistry of Transition Elements			
	Chemistry of Elements of First Transition Series -Characteristic properties of d-block elements.			
l	Binary compounds (hydrides, carbides and oxides) of the elements of the first transition series and			
l	complexes with respect to relative stability of their oxidation states, coordination number and			
IV	geometry.	06		
1,	Chemistry of Elements of Second and Third Transition Series- General characteristics,			
	comparative treatment of Zr/Hf, Nb/Ta, Mo/W in respect of ionic radii, oxidation states, magnetic			
	behavior, spectral properties and stereochemistry.			
	Chemistry of Lanthanides			
V	Electronic structure, oxidation states and ionic radii and lanthanide contraction, complex formation,	4		
	occurrence and isolation, ceric ammonium sulphate and its analytical uses.	-		
	Chemistry of Actinides			
VI	Electronic configuration, oxidation states and magnetic properties, chemistry of separation of Np,	4		
	Pu and Am from U.	-		
	Metal Carbonyls			
VII	Metal carbonyls: 18-electron rule, preparation, structure and nature of bonding in the mononuclear	6		
	and dinuclea carbonyls.	-		
	Bioinorganic Chemistry			
	Essential and trace elements in biological processes, metallonorphyring with special reference to			
VIII	heamoglobin and myoglobin. Biological role of alkali and alkaline earth metal ions with special	6		
	reference to Ca ²⁺ . Nitrogen fixation.			
Suggested Readings:				
Suggestee	l Readings:			
Suggestee 1. Mo	I Readings: rrison, R. N. & Boyd, R. N. <i>Organic Chemistry</i> , Dorling Kindersley (India) Pvt. Ltd. (Pearson Educ	ation).		
Suggested 1. Mo 2. Syk 3. Car	I Readings: rrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Educ tes, P. A guidebook to Mechanism in Organic Chemistry, Pearson Education, 2003. ev. F. A., Guiliano, R. M.Organic Chemistry, Eighth edition, McGraw Hill Education, 2012	ation).		
Suggested1.Mo2.Syk3.Car4.Lou	I Readings: rrison, R. N. & Boyd, R. N. <i>Organic Chemistry</i> , Dorling Kindersley (India) Pvt. Ltd. (Pearson Educ tes, P. <i>A guidebook to Mechanism in Organic Chemistry</i> , Pearson Education, 2003. ey, F. A., Guiliano, R. M. <i>Organic Chemistry</i> , Eighth edition, McGraw Hill Education, 2012. adon, G. M. <i>Organic Chemistry</i> , Fourth edition, Oxford University Press, 2008.	ation).		

6. Graham Solomons, T.W., Fryhle, C. B. Organic Chemistry, John Wiley & Sons, Inc.

- 7. Smith, J. G. Organic Chemistry, Tata McGraw-Hill Publishing Company Limited.
- 8. March, J. Advanced Organic Chemistry, Fourth edition, Wiley.
- 9. Lee, J.D. Concise Inorganic Chemistry, Pearson Education 2010
- 10. Huheey, J.E., Keiter, E.A., Keiter, R. L., Medhi, O.K. Inorganic Chemistry, Principles of Structure and Reactivity, Pearson Education 2006
- 11. Douglas, B.E. and Mc Daniel, D.H., Concepts & Models of Inorganic Chemistry, Oxford, 1970
- 12. Shriver, D.D. & P. Atkins, Inorganic Chemistry 2nd Ed., Oxford University Press, 1994.
- 13. Day, M.C. and Selbin, J. Theoretical Inorganic Chemistry, ACS Publications 1962.
- 14. Francis, P. G. Mathematics for Chemists, Springer, 1984
- 15. Prakash Satya, Tuli G.D., Basu S.K. Madan R.D., Advanced inorganic Chemistry, S.Chand publishing.
- 16. Bariyar and Goyal, Inorganic Chemistry-II, Krishna Prakashan Media, Meerut, Third Eddition, 2019

Note: For the promotion of Hindi language, course books published in Hindi may be prescribed by the University

Suggested online links:

http://heecontent.upsdc.gov.in/Home.aspx

https://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/intro1.htm

https://nptel.ac.in/courses/104/103/104103071/#

https://swayam.gov.in/

This course can be opted as an elective by the students of following subjects: Chemistry in 12th Class

Suggested Continuous Evaluation Methods:

Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations, among others .

Or			
Assessment and presentation of Assignment	(10 marks)		
04 Unit tests (Objective): Max marks of each unit test $= 10$	(10 marks)		
(average of all 04 unit tests)			
Overall performance throughout the . (Discipline,	(05 marks)		
participation in different activities)			
Course prerequisites: To study this course, a student must have Passed Sem-I, Theory paper			
Suggested equivalent online courses:			
Further Suggestions:			

.....

Paper-3 (Practical) Course Title: Qualitative Analysis

Programme:Degree inYear: ThrBachelor of Science		ee	SEMESTER-V		
Subject: Chemistry					
Course	Course Code: B020503P Course Title: Qualitative Analysis				
Course ou Upon comp and tests re • Ide • Se • Ele • Ide • Ide	Itcomes: pletion of this course t elated to inorganic mix entification of acidic a paration of organic co emental analysis in org entification of function entification of organic	he students will have t stures and organic cor nd basic radicals in in mpounds from mixtur ganic compounds nal group in organic co compound	he knowledg npounds. organic mix re ompounds	ge and skills to: understand the labor tures	atory methods
	Credits: 2	- only o min		Elective	
	Max. Marks: 2	5+75		Min. Passing Marks:	
	Practical			60 h	
Unit	Topics			No of lectures	
I	Inorganic Qualitative AnalysisSemi micro Analysis – cation analysis, separation and identification of ions from GroupsI, II, III, IV, V and VI, Anion analysis. Mixture containing 6 radicals-2 +4 or 4+ or 3+316			16	
п	Elemental analysis and identification of functional groups Detection of extra elements (N, S and halogens) and functional groups (phenolic, carboxylic, carbonyl, esters, carbohydrates, amines, amides, nitro and anilide) in simple 14 organic compounds.			14	
III	Separation of Organic Mixture Analysis of an organic mixture containing two solid components using water, NaHCO ₃ , NaOH for separation and preparation of suitable derivatives 18			18	
IV	IV Identification of organic compounds Identification of an organic compound through the functional group analysis, determination of melting point and preparation of suitable derivatives.			12	

Suggested Readings:

- 1. Svehla, G. Vogel's Qualitative Inorganic Analysis, Pearson Education, 2012.
- 2. Mendham, J. Vogel's Quantitative Chemical Analysis, Pearson, 2009.
- 3. Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G., Textbook of Practical Organic Chemistry, Prentice-Hall, 5th edition, 1996.
- 4. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry Orient-Longman, 1960.
- 5. Harris, D.C. *Exploring Chemical Analysis*, 9thEd. New York, W.H. Freeman, 2016.
- 6. Khopkar, S.M. *Basic Concepts of Analytical Chemistry*. New Age International Publisher, 2009.

Note: For the promotion of Hindi language, course books published in Hindi may be prescribed by the University

Suggestive digital platforms web links

- 4. <u>https://www.labster.com/chemistry-virtual-labs/</u>
- 5. https://www.vlab.co.in/broad-area-chemical-sciences
- 1. <u>http://chemcollective.org/vlabs</u>

This course can be opted as an elective by the students of following subjects: Chemistry in 12 th Class				
Suggested Continuous Evaluation Met	hods:			
Viva voce	(10 marks)			
Mock test	(10 marks)			
Overall performance (05marks)				
Course prerequisites: To study this of	course, a student must have Opted Sem-V Theory Ppaer-1 &2			
Suggested equivalent online courses:				
Further Suggestions:				